
SWS Integration Guide

Introduction
Soap Interface

Methods for automatic and remote signature
Method signPades
Method signCades
Method signXades

Methods only for remote signature
Method getOtpList
Method sendOtpBySMS
Method openSession
Method getRemainingTimeForSession
Method closeSession

Method for apply timestamp
Method timestamp
Method getAvailableTimestamps (since SWS v2.5.44)

How Sign the file
Credentials Object

For automatic and remote signature
Only for remote signature

How works method getOTPList?
Sign with OTP SMS
Sign with OTP GENERATOR (App)
Sign with sessionKey
How obtain the sessionKey?
How check if the session has expired or valid
Destroy manually the session
Sequence diagram for sign with sessione and OTP SMS
Sequence diagram for sign with session with OTP App (da valutare)

Summarize
Populate the "buffer"
Signature Preferences

PadES Preferences
SignerImage

Cades Preferences
Xades Preferences
Level

How apply the timestamp
Manage error in SWS

Method getErrors
Examples (source code)

Introduction
After install and configure you virtual appliance SWS, now you can use their method to sign or apply timestamp. SWS have two interfaces SOAP or
REST. SOAP is used for files under 50MB and REST interface is used for files over 50MB.

SWS can manage some signature device like:

automatic signature (her name start with AHI or AHIP followed by numbers)
eSeal (her name start with SHI or SHIP followed by numbers)
remote signature (her name start RHI or RHIP followed by numbers)
disposable signature (her name start with RHI or RHID followed by numbers)
long lived signature (her name start with RHIL or RHILD followed by numbers)

 during the integration, you can see:Only

eSeal like a automatic signature
disposable, longlived like a remote signature

And the remote signature like an extension of automatic signature, because beyond username and password require the OTP code.

SWS supports three differents types of signature:

Pades: valid only for PDF files
Xades: valid only for XML files
Cades: valid for every type of files

Apply timestamp on files (according to standard RFC3161)

For every type of signature and timestamp, there is a dedicated web method, which will be described in the the next sections.

In this user guide the examples will be shown using "SoapUI". This is a free tool which can be installed on every OS. With this tool, is possible to
create SOAP request which invoke the differents web methods.

During the integration, the application client of SWS should recreate the same XML soap request created on SoapUI with his program language.

Soap Interface
For test SOAP interface, you can make request with SoapUI, following this steps:

Download and install SoapUI from this link:

https://www.soapui.org/tools/soapui/

Once complete the installation:

open SoapUI File New Soap Project

And add appliance SWS method to SoapUI, like in this image:

In text box “Initial WSDL” use this URL:

http://<IP-APPLIANCE>:8080/SignEngineWeb/sign-services?wsdl

And you will obtain the list of method like this:

https://www.soapui.org/tools/soapui/

Methods for automatic and remote signature

The principal method used to sign (valid for remote and automatic signature), they are:

signPAdES Used for sign only PDF files

signCAdES Used for sign every type of files

signXAdES Used for sign XML files

getSignatures permit to obtain the number of signature made since certicate creation

getAvailableSignatures permit to obtain the numbers of signatures (valid only for device NOT pay per use, else it will generate an exception)

Every method require the Credentials object, in the next section will see how populate this field.

Method signPades

This parameters required (IN) and the output (OUT) of this method can be specified with this table:

signPadesList

Name Type Description IN/OUT

credentials Credentials See the section Credentials for see how populate this object IN

bufferList List<byte[]> List of byte array which you want sign IN

PAdESPreferences PAdESPreferences Specify the details of PadesSignature. See the section PadesPreferences for populate di object IN

List<byte> List of byte array containg the file just signed OUT

Method signCades

This parameters required (IN) and the output (OUT) of this method can be specified with this table:

signPadesList

Name Type Description IN/OUT

credentials Credentials See the section Credentials for see how populate this object IN

bufferList byte[] byte array which you want sign IN

CAdESPreferences CAdESPreferences Specify the details of PadesSignature. See the section CadesPreferences for populate this object IN

byte[] List of byte array containg the file just signed OUT

Method signXades

This parameters required (IN) and the output (OUT) of this method can be specified with this table:

signXadesList

Name Type Description IN/OUT

credentials Credentials See the section Credentials for see how populate this object IN

bufferList byte[] byte array which you want sign IN

XAdESPreferences XAdESPreferences Specify the details of XadesSignature. See the section XadesPreferences for populate this object IN

byte[] byte array containg the file just signed OUT

Methods only for remote signature

If you are signing with , you can use also this methods:remote signature

getOTPList permit to obtain the list of OTP associate to your remote signature (exactly the OTP is associated to the holder of certificate. For example
if you have two or more remote signature associate to same holder, you can use this OTP for every remote signature).

sendOtpBySMS it will send the SMS containig the OTP code.

openSession permit to obtain the token (like a string) for sign instead to insert new OTP code on every signature). The token is valid for three
minutes from generation.

getRemainingTimeForSession it return the time until the session is valid

closeSession if you want destroy the token before three minutes (howewer will expire after three minutes)

Method getOtpList

getOtpList

Name Type Description IN/OUT

credentials Credentials See the section Credentials for see how populate this object IN

List<OTP> List of OTP associate to the Credentials OUT

Method sendOtpBySMS

sendOtpBySMS

Name Type Description IN/OUT

credentials Credentials See the section Credentials for see how populate this object IN

At the end of this method the customer will receive the SMS with OTP code to use.

Method openSession

openSession

Name Type Description IN/OUT

credentials Credentials See the section Credentials for see how populate this object IN

String Sessionkey to use for sign OUT

At the end of this method the customer will receive the SMS with OTP code to use.

Method getRemainingTimeForSession

getRemainingTimeForSession

Name Type Description IN/OUT

credentials Credentials See the section Credentials for see how populate this object IN

int remaing seconds until the session is valid OUT

Method closeSession

closeSession

Name Type Description IN/OUT

credentials Credentials See the section Credentials for see how populate this object IN

At the end of this method the session will be destroyed

Method for apply timestamp

SWS offer method to apply timestamp and enquiry (only for Namirial account)

timestamp it permits to obtain the file with timestamp is possible to choose between two types TSR or TSD. The option TSR mean the timestamp is
another files, while the TSD mean the timestamp signature is in the same file.

getAvailableTimestamps it permits to obtain the timestamp available ONLY for Namirial account

After this introduction, below will be described every method with input required.

Method timestamp

timestamp

Name Type Description IN/OUT

content byte[] byte array where apply the timestamp IN

preferences TimeStampPreferences preferences about timestamp url, username, password ecc.. IN

byte[] timestamp in binary format OUT

This method can be used with all timestamp account (not only Namirial) they must use standard RFC3161.

NOTE: Since SWS v2.5.44 this method support Adobe Timestamp on timestampPreferences you should set "outputAsPDF=true".

Method getAvailableTimestamps (since SWS v2.5.44)

getAvailableTimestamps

Name Type Description IN/OUT

preferences TimeStampPreferences timestamp url, username, password IN

Long number of timestamp available. With account payperuse will be generated an Exception OUT

NOTE: TimestampUrl can be set to:

TIMESTAMP URL Environment

https://timestamp.namirialtsp.com PROD

https://timestamp.test.namirialtsp.com TEST

How Sign the file
For sign the file with SWS every method require this parameters:

Credentials: contain the value about signature device
Preferences: contain the signature details like page, appereance ecc..., Level of signature (B, T, LT ecc...). There are different type of
preferences PadesPreferences, CadesPreferences, XadesPreferences
buffer: file which you want sign

In the sections will see how set this parameters

Credentials Object

All the methods used for sign (signPAdES..., signCAdES..., signXAdES) they use the Credentials object, like you can see in this image:

How popolate this fields?

For automatic and remote signature

For every type of signature (automatic signature and remote signature) you must fill this two fields:

username: contain the device name it start with RHI..., AHI... or SHI...

password: contain the PIN associated to device (read from blind envelope or set by the customer)

Only for remote signature

While if you you are using the remote signature (username starts with RHI...) you should fill this fields:only

idOtp: (optional) it specify the idOtp which you want use for sign. If you don't want set the idOtp, SWS will use automatically the default OTP. You can
use the method getOTPList for obtain the idOtp.

Otp: it contains the OTP code recived by SMS or read on app Namirial

sessionKey: it contain the token (like a string) received from method openSession

securityCode: this parameter must not be set. It is used only in certain situation

How works method getOTPList?

With this method you can obtain the OTP list which can be use with specified username, and you will can populate the variable Credentials.idOtp.

This method it require only the username.

For example with username: RHIP20102336019765, in this request:

REQUEST-getOTPList

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ser="http://service.ws.nam
/">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:getOTPList>
 <credentials>
 <username>RHIP20102336019765</username>
 </credentials>
 </ser:getOTPList>
 </soapenv:Body>
</soapenv:Envelope>

You will obtain response like this:

RESPONSE-getOTPList

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns2:getOTPListResponse xmlns:ns2="http://service.ws.nam/">
 <return>
 <idOtp>501719</idOtp>
 <serialNumber>20210113-091031RJ2L1</serialNumber>
 <type>SMS</type>
 </return>
 <return>
 <idOtp>537430</idOtp>
 <serialNumber>20210305-163726L0PYF</serialNumber>
 <type>OTP GENERATOR</type>
 </return>
 <return>
 <idOtp>537433</idOtp>
 <serialNumber>20210305-163726F0I75</serialNumber>
 <type>OTP PUSH</type>
 </return>
 </ns2:getOTPListResponse>
 </soap:Body>
</soap:Envelope>

During the sign process is possible to choose between this two idOtps: 501719 (associated to OTP SMS) and the idOTP: 537430 (associated to OTP
GENERATOR).

Isn't possible to use OTP PUSH, they are used for other purpose, not for sign.

Now during the sign we can choose two types of idOTP: 501719 or 537430.

Sign with OTP SMS

If you decide to sign with OTP SMS, you should use the method: sendOTPBySMS

This method require in input only the username (in this example the username is: RHIP20102336019765).

The soap request will be like this:

REQUEST-sendOTPBySMS

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ser="http://service.ws.nam
/">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:sendOtpBySMS>
 <credentials>
 <username>RHIP20102336019765</username>
 </credentials>
 </ser:sendOtpBySMS>
 </soapenv:Body>
</soapenv:Envelope>

And if everything is ok, in output will receive the response like this:

RESPONSE-sendOTPBySMS

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns2:sendOtpBySMSResponse xmlns:ns2="http://service.ws.nam/"/>
 </soap:Body>
</soap:Envelope>

And on mobile phone will receive the SMS containing the OTP code (composed from 6 number) for sign, for example now we have received the code:
“214196”.

The just received will be the variable during the process of sign.OTP code Crediantls.otp

Sign with OTP GENERATOR (App)

If you decide to sign with OTP GENERATOR, you should open the Namirial OTP App and insert the OTP code showed during the sign process.

Show the guide "How to configure Namirial OTP App" (To Do/Add)

Sign with sessionKey

With otp is possible to make only one signature, but if you have need to sign more files, with the “ ” is possible. In the next section will be sessionKey
described how works the session.

This function is available only for remote signature, it permits to sign at most 3 minutes using the same sessionKey. You can see the session like a
token provided from method “openSession”.

How obtain the sessionKey?

The method “openSession” it permits to obtain the sessionKey.

In input it require:

username
password
otp
idOtp

Like in this example:

REQUEST-openSession

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ser="http://service.ws.nam/">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:openSession>
 <credentials>
 <idOtp>501719</idOtp>
 <otp>150259</otp>
 <password>13572468</password>
 <username>RHIP20102336019765</username>
 </credentials>
 </ser:openSession>
 </soapenv:Body>
</soapenv:Envelope>

In output will obtain the value of sessionKey which will be used for sign:

RESPONSE-REMOTE-openSession

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns2:openSessionResponse xmlns:ns2="http://service.ws.nam/">
 <return>
 f4lf7bq/cCxW6mTgL3iGjFEST5cEAZjgLnXvV3hUFzFHcTvjlH3FOkJy+kv/0Zsv1
 uNK0S7L6jMqHYSspBz+CZl7h3r5IEP2FqrK7WJQTVyrNfyr/trZmDgxYOLuACyoZVUFIlnck5Lkjihui
 sv+gZeB68Spwm+cNDdQQdUS3ngzJavHXxo9ADCX6VDIKKMe
/AY0v+R51XWE90JF5LfKEThlv1OCpQC5nhnW8WKOFOm
 P4vM90d79JhFYGVVSZWtnTQ9Dg8pOMvg9wwxNm3uGkKKaS7oTp1ewd+eCG/uSC9k3H2w9GB6vQLHQEbn6d
 VVMcsIqJ0RMmZ2IgraD+scb4Q==
 </return>
 </ns2:openSessionResponse>
 </soap:Body>
</soap:Envelope>

The sessionKey just obtained is valid for three minutes (isn't possible to edit this value!), after will expire and will needed to generate another
sessionKey using the method openSession and new OTP code (isn't possible to use the same OTP already used).

How check if the session has expired or valid

Is possible to know when the session will expire with method: “getRemainingTimeForSession”. This method require in input only:

usernamame
sessionKey (obtained from method "openSession"

Below the example:

REQUEST-remote-getRemainingTimeForSession

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ser="http://service.ws.nam/">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:getRemainingTimeForSession>
 <credentials>
 <username>RHIP20102336019765</username>
 <sessionKey>
 f4lf7bq/cCxW6mTgL3iGjFEST5cEAZjgLnXvV3hUFzFHcTvjlH3FOkJy+kv
/0Zsv1
 uNK0S7L6jMqHYSspBz+CZl7h3r5IEP2FqrK7WJQTVyrNfyr
/trZmDgxYOLuACyoZVUFIlnck5Lkjihui
 sv+gZeB68Spwm+cNDdQQdUS3ngzJavHXxo9ADCX6VDIKKMe
/AY0v+R51XWE90JF5LfKEThlv1OCpQC5nhnW8WKOFOm
 P4vM90d79JhFYGVVSZWtnTQ9Dg8pOMvg9wwxNm3uGkKKaS7oTp1ewd+eCG
/uSC9k3H2w9GB6vQLHQEbn6d
 VVMcsIqJ0RMmZ2IgraD+scb4Q==
 </sessionKey>
 </credentials>
 </ser:getRemainingTimeForSession>
 </soapenv:Body>
</soapenv:Envelope>

The SOAP response will be:

RESPONSE-remote-getRemainingTimeForSession

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns2:getRemainingTimeForSessionResponse xmlns:ns2="http://service.ws.nam/">
 <return>167</return>
 </ns2:getRemainingTimeForSessionResponse>
 </soap:Body>
</soap:Envelope>

Where 167 are the seconds until the session is active. After 180s from creation will be destroyed automatically, but is close the session good pratice
before will expire.

You can destroy the session manually before will expire with method: "closeSession"

Destroy manually the session

The method "closeSession" require in input:

sessionKey
username

Below the SOAP request example:

REQUEST-remote-closeSession

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ser="http://service.ws.nam/">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:closeSession>
 <credentials>
 <sessionKey>
 f4lf7bq/cCxW6mTgL3iGjFEST5cEAZjgLnXvV3hUFzFHcTvjlH3FOkJy+kv/0Zsv1
 uNK0S7L6jMqHYSspBz+CZl7h3r5IEP2FqrK7WJQTVyrNfyr
/trZmDgxYOLuACyoZVUFIlnck5Lkjihui
 sv+gZeB68Spwm+cNDdQQdUS3ngzJavHXxo9ADCX6VDIKKMe
/AY0v+R51XWE90JF5LfKEThlv1OCpQC5nhnW8WKOFOm
 P4vM90d79JhFYGVVSZWtnTQ9Dg8pOMvg9wwxNm3uGkKKaS7oTp1ewd+eCG
/uSC9k3H2w9GB6vQLHQEbn6d
 VVMcsIqJ0RMmZ2IgraD+scb4Q==
 </sessionKey>
 <username>RHIP20102336019765</username>
 </credentials>
 </ser:closeSession>
 </soapenv:Body>
</soapenv:Envelope>

For security reason, this method doesn't generate an exception if you insert wrong sessionKey and/or username. The SOAP response will be ever like
this:

RESPONSE-remote-closeSession

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns2:closeSessionResponse xmlns:ns2="http://service.ws.nam/"/>
 </soap:Body>
</soap:Envelope>

Sequence diagram for sign with sessione and OTP SMS

In this seguence diagram, we can sumarize the methods to call for sign using sessionKey and OTP SMS:

Sequence diagram for sign with session with OTP App (da valutare)

In this seguence diagram, we can sumarize the methods to call for sign using sessionKey and OTP SMS:

Summarize

Finally we have all requisites to populate Credentials object during the sign. Like mentioned before, the methods to sign are:

signPAdES
signCAdES
signXAdES

There are the same methods with suffix "List", they accept in input a list of files to be signed. Therefore with only SOAP request is possible to sign
more files (using automatic signature or sessionKey)

With this three methods is possible to sign with every type of signature (automatic and remote).

Everyone of this three methods use the Credentials object .filled in the same time

The automatic signature, the variables in the object Credentials.require only username and password

For example in automatic signature with username: AHI7609757152622 and password 13572468 the object Credentials will be populate like in the
image:

REQUEST-AUTOMATIC-Credentials

<credentials>
 <username>RHIP20102336019765</username>
 <password>1357268</password>
</credentials>

While if you are using you should fill the other fields:remote signature

idOtp (only if you have more idOTP received from method getOTPList)
OTP or sessionKey (will see in the next section how populate this variable)

Suppose we want sign using with the OTP code received previously from method sendOtpBySMS.

The credentials object will be filled in this way:

REQUEST-Credentials-Remote-OTP-SMS

<credentials>
 <idOtp>501719</idOtp>
 <otp>150259</otp>
 <password>13572468</password>
 <username>RHIP20102336019765</username>
</credentials>

idOtp was obtained from method getOTPList method and is the code received from method sendOTPBySMS.otp

Therefore for automatic signature the credentials object is composed by:

username
password

While for signature the credentials object is composed by:remote

username
password
otp
idOtp (only if you have more OTP else you can set this to "-1")
sessionKey (optional)

If you need to sign multiple files with remote signature you should use the sessionKey how already described.

Now, is complete how populate the Credentials object for methods: signPades, signCades and signXades, we can populate the object buffer.

Now we should populate the value of:

buffer
Prefecences of signature (there are different types for every type of signature)

Populate the "buffer"

The buffer contain the file (in byte array) which you want sign.

For example in SoapUI the buffer is composed by the base64 of file which you want sign, like in this example:

 REQUEST-remote-signPades

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ser="http://service.ws.nam
/">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:signPAdES>
 <credentials>
 <idOtp>501719</idOtp>
 <otp>548316</otp>
 <password>13572468</password>
 <username>RHIP20102336019765</username>
 </credentials>
 <buffer>BASE64-FILE-TO-SIGN</buffer>
 <PAdESPreferences>
 <level>B</level>
 <signerImage></signerImage>
 </PAdESPreferences>
 </ser:signPAdES>
 </soapenv:Body>
</soapenv:Envelope>

You can dowload the full exampe at this link: signPadesList.xml

In output will obtain the base64 associated to file just signed like this: and dRESPONSE-base64-signPadesList.b64 ecoded will be this PDF: RESPON
.SE-signPadesList.pdf

Signature Preferences

The difference between signPades, signCades and signXades are based on the :preferences

signPades use PadESPreferences

signCades use CadESPreferences

signXades use XadESPreferences

How populate this preferences will be describe in the next sections.

PadES Preferences

This type of preference is used in method signPades. Their principal options are:

PAdESPreferences

Name Type Mandatory Default
value

Description Included
from SWS
version

hashAlgorithm String SHA256 Algorithm which you want use for sign. Possibile value are: SHA1, SHA256, SHA384,
SHA512

level Level B See the description of Level type

signType int

https://confluence.namirial.com/download/attachments/50234655/signPadesList.xml?version=1&modificationDate=1636637569148&api=v2
https://confluence.namirial.com/download/attachments/50234655/RESPONSE-base64-signPadesList.b64?version=1&modificationDate=1617185776893&api=v2
https://confluence.namirial.com/download/attachments/50234655/RESPONSE-signPadesList.pdf?version=1&modificationDate=1617185839268&api=v2
https://confluence.namirial.com/download/attachments/50234655/RESPONSE-signPadesList.pdf?version=1&modificationDate=1617185839268&api=v2

encryptInAnyC
ase

boolean false

filenameInTSD String Not used

outputAsTSD boolean Not used

withTimestamp boolean false Specify if you want add or not the timestamp to file signed

outputBase64
Encoded

boolean false Set to true if you want file signed in Base64 encode

timestampHas
hAlgo

String SHA-256 Algorithm which you want to use during the process of apply timestamp.

timestampUrl String URL of timestamp provider with standard RFC3161.

Namirial URL:

PROD: / https://timestamp.namirialtsp.com http://timestamp.namirialtsp.com

TEST: / https://timestamp.test.namirialtsp.com http://timestamp.test.namirialtsp.com

timestampUse
rname

String Username of timestamp credentials

timestampPas
sword

String Password of timestamp credentials

lockFields List<Str
ing>

needAppearan
ceDisabled

boolean false Deprecated

page 1 Indicate the page number where you want apply the signature appereance. If you want
add the appereance on last page of the PDF, you should set to "-1".

withTimestamp boolean false Set to true if you want apply the timestamp after the signature

encryptionPas
sword

String Specify the password PDF if present

lockFields List<Str
ing>

signerImage SignerI
mage

See the description of SignerImage

signerImageR
eference

String Used for specify the template to be used. (used in old version)

withSignatureF
ield

boolean false Set to true if you want apply the signature on signature field in the PDF

SignerImage

The object SignerImage is composed by the following details:

SignerImage

Name Type Mandatory Default
value

Description Included from
SWS version

image byte[] Contains the image which you want apply on the appereance

signerName String Contains the text which you want type on the appereance

reason String Specify the reason about the signature

textVisible boolean true permits to show or not the text on appereance

textPosition String Position of the "signerName" on appereance. Is possible to choose between:

TOP
BOTTOM
RIGHT
LEFT

x int Coordinate X of the appereance (0 is right of the page)

y int Coordinate Y of the appereance (0 is on bottom of the page)

width int Specify the width of the appereance

height int Specify the height of the appereance

https://timestamp.namirialtsp.com
http://timestamp.namirialtsp.com
https://timestamp.test.namirialtsp.com
http://timestamp.test.namirialtsp.com

fieldName Specify the fieldname where apply signature. This fieldName must already exist on
PDF file before apply the signature

fontName String Times-
Roman

Specify the font of the text on appereance to be used. The possible values are:

Times-Roman
Times-Bold
Times-Italic
Times-BoldItalic
Helvetica
Helvetica-Bold
Helvetica-Oblique
Helvetica-BoldOblique
Courier
Courier-Bold
Courier-Oblique
Courier-BoldOblique
Symbol
ZapfDingbats

fontName String Specify the ttf path which contain custom font 2.5.39

imageURL String URL to obtain the logo for appereance

imageVisib
le

boolean false permits to show or not the logo on appereance

fontSize int 10 permits to set the fontsize

imageFilen
ame

String path of the logo on appereance

scaled boolean false Set to true if you want resize the logo on appereance

location place of signature

INSERT EXAMPLE WITH APPEREANCE

Cades Preferences

With cades signature is possible to sign every type of file, the method signCades require:

Credentials associated to device signature
buffer, file which you want sign
CAdESPreferences, the preferences about CAdES signature

In the following table you can see how set correctly the CAdESPreferences

CAdESPreferences

Name Type Mandatory Default
value

Description Included from SWS
version

filenameInTSD

outputAsTSD

outputBase64Enc
oded

boolean false Encoded the file just signed in base64

timestampHashAl
go

String SHA-256 Algorithm which you want to use during the process of apply timestamp.

timestampPasswo
rd

timestampUrl String URL of timestamp provider with standard RFC3161.

Namirial URL:

PROD: / https://timestamp.namirialtsp.com http://timestamp.namirialtsp.
com

TEST: / https://timestamp.test.namirialtsp.com http://timestamp.test.
namirialtsp.com

timestampUserna
me

String Username of timestamp credentials

hashAlgorithm String yes SHA256 Algorithm which you want use for sign. Possibile value are: SHA1,
SHA256, SHA384, SHA512

https://timestamp.namirialtsp.com/
http://timestamp.namirialtsp.com
http://timestamp.namirialtsp.com
https://timestamp.test.namirialtsp.com/
http://timestamp.test.namirialtsp.com
http://timestamp.test.namirialtsp.com

level Level B See the description of Level type

withTimestamp boolean false Set to true if you want apply the timestamp after the signature

counterSignature

counterSignatureI
ndex

detached boolean false Set to true if you want signature and files in two different files. The output
will be the signature.

Xades Preferences

With xades signature is possible to sign only XML files, the method signXades require;

Credentials associated to device signature
buffer, file which you want sign
XAdESPreferences, the preferences about XAdES signature

In the following table you can see how set correctly the XAdESPreferences

XAdESPreferences

Name Type Mandatory Default
value

Description Included from SWS
version

filenameInTSD

outputAsTSD

outputBase64Encod
ed

boolean false Encoded the file just signed in base64

timestampHashAlgo String SHA-256 Algorithm which you want to use during the process of apply timestamp.

timestampPassword

timestampUrl String URL of timestamp provider with standard RFC3161.

Namirial URL:

PROD: / https://timestamp.namirialtsp.com http://timestamp.namirialtsp.
com

TEST: / https://timestamp.test.namirialtsp.com http://timestamp.test.
namirialtsp.com

timestampUsername String Username of timestamp credentials

hashAlgorithm String yes SHA256 Algorithm which you want use for sign. Possibile value are: SHA1,
SHA256, SHA384, SHA512

level Level B See the description of Level type

withTimestamp boolean false Set to true if you want apply the timestamp after the signature

detached boolean false Set to true if you want signature and files in two different files. The
output will be the signature.

detachedReference
URI

String

signElement String

signatureId String

withoutSignatureExc
lusion

boolean false Permits to sign the file with/without previous signature

XPathQuery String Permetis to sign a specified path of XML

Below the example of Xades Signature Level B:

signXadesList-Level-B.txt

Level

You can see how set the correct Level signature:

Level

https://timestamp.namirialtsp.com/
http://timestamp.namirialtsp.com
http://timestamp.namirialtsp.com
https://timestamp.test.namirialtsp.com/
http://timestamp.test.namirialtsp.com
http://timestamp.test.namirialtsp.com
https://confluence.namirial.com/download/attachments/50234655/signXadesList-Level-B.txt?version=1&modificationDate=1643636802378&api=v2

V
al
ue

Description Apply on
signature

Included from
SWS version

B in the file signed will be added the electronic signature and the signing certificate Pades,
Cades,
Xades

T Like B-Level, but adds a time-stamp, respectively a time-mark that proves that the signature existed at a certain date and time Pades,
Cades,
Xades

LT Like T-Level, but adds VRI (Verification Related Information) data to the DSS (Long Term) Pades,
Cades,
Xades

L
TA

Like LT-level, but adds a document time stamp and VRI data for the TSA (Time Stamping Authority). An LTA may help to
validate the signature beyond any event that may limit its validity (Long Term with Arichive Time-Stamps)

Pades,
Cades,
Xades

L
TV

(Long Term Validation) contain the OCSP/CRL response after the sign. It is used for validation after the signing certificate has
been expired

Pades

How apply the timestamp

Is possible to apply timestamp wit the method "timestamp", in input require:

content: byte array of file to apply timestamp
preferences: object with contains details about timestamp

Below the object timestamp:

Name Type Mandatory Default
value

Description Included from SWS
version

filenameInTSD

outputAsTSD

outputBase64Enco
ded

boolean false Encoded the file just signed in base64

timestampHashAlgo String SHA-256 Algorithm which you want to use during the process of apply
timestamp.

timestampPassword

timestampUrl String URL of timestamp provider with standard RFC3161.

Namirial URL:

PROD: / https://timestamp.namirialtsp.com http://timestamp.
namirialtsp.com

TEST: / https://timestamp.test.namirialtsp.com http://timestamp.test.
namirialtsp.com

Manage error in SWS
Every method can generate exception, for example caused by PIN not correct, sessioneKey expired or OTP not correct.

For example if we can try to execute the method signPAdESList using the same OTP used we obtain SOAP response with error 44, like in this
response:

https://timestamp.namirialtsp.com/
http://timestamp.namirialtsp.com
http://timestamp.namirialtsp.com
https://timestamp.test.namirialtsp.com/
http://timestamp.test.namirialtsp.com
http://timestamp.test.namirialtsp.com

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Server</faultcode>
 <faultstring>Codice OTP errato, riprovare con il prossimo codice</faultstring>
 <detail>
 <ns2:WSException xmlns:ns2="http://service.ws.nam/">
 <error>44</error>
 <message>Codice OTP errato, riprovare con il prossimo codice</message>
 </ns2:WSException>
 </detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

By default the error message is in Italian language.

Below the table description with all error messages can generate SWS during your execution method:

Error details

Error
number

Description

English Italian

0 No errors found Nessun errore riscontrato

1 Generic error Errore Generico

2 Virtual device not found Dispositivo virtuale inesistente

3 Virtual device locked Dispositivo virtuale bloccato

4 Wrong credentials Credenziali errate

5 Wrong emergency code Codice di emergenza errato

6 Virtual device status changes denied Modifiche allo stato del dispositivo virtuale negate

7 Signature error Errore nella firma

8 Error creating slot Errore nella creazione dello slot

9 Error deleting slot Errore nella eliminazione dello slot

10 PIN change error Errore nel cambio PIN

11 Key generation error Errore nella generazione chiave

12 Error in key management configuration Errore nella configurazione del sistema di gestione delle chiavi

13 Wrong company code Codice azienda errato

14 No available slots Nessuno slot disponibile

15 Virtual device already exists Dispositivo virtuale gia' esistente

16 Operation performed using a wrong certificate Operazione eseguita usando il certificato errato

17 Wrong virtual device code Codice dispositivo virtuale errato

18 Slot already used Slot gia' utilizzato

22 Incompatible file format for the signature type required Richiesta una firma di file di formato non compatibile con il tipo di firma richiesto

23 Unsupported hash algorithm Algoritmo di hash non supportato

24 Error decrypting CMS data Errore nella decifratura del CMS EnvelopedData

25 Error importing key and certificates Errore nell'importazione di chiave e certificati

26 The public key in the certificate does not match the
private key

Chiave pubblica nel certificato non corrisponde a quella privata

27 Web method denied for the credentials or ssl
certificate used

Eseguita una chiamata a web method mediante credenziali o certificato ssl non
abilitato per questa funzione

28 CA doesn't exist La CA inserita non esiste

29 The user didn't enter all required fields for the profile L'utente non ha inserito tutti i campi richiesti per il profilo

30 EJBCA error Errore di EJBCA

31 Authorization denied Autorizzazione negata

32 Error due to waiting for data approval Errore dovuto all'attesa per l'approvazione dei dati

33 Error approving the entered data Errore nell'approvazione dei dati inseriti

34 Illegal query Errore per query illegale

35 Certificate already revoked Certificato gia' revocato in precedenza

36 I / O error, caused by writing / reading / converting a
file / byte array / string

Errore di I/O, causato dalla scrittura/lettura/conversione di un file/array di byte
/stringa

37 Payment verification failed Verifica di pagamento non andata a buon fine

38 No available signatures Eseguite tutte le firme a disposizione

42 A denied feature is invoked in the current mode E' stata richiamata una funzionalita' non permessa nella modalita' corrente

43 A denied feature is invoked in the implementation used E' stata richiamata una funzionalita' non permessa nell'implementazione usata

44 Wrong OTP code, try again with the next code Codice OTP errato, riprovare con il prossimo codice

45 The key isn't associated to a certificate La chiave non ha associato un certificato

46 Unknown certificate format E' stato passato un certificato di formato sconosciuto

47 It isn't possible to open the slot Non e' stato possibile aprire lo slot

49 Key login error Errore di login sulla chiave

50 Error generating the CSR Errore nella generazione del CSR

51 The maximum number of attempts to access the
virtual device is reached

Raggiunto il numero massimo di tentativi di accesso al dispositivo virtuale

52 Error decrypting Errore nella decifra

53 The certificate has expired Il certificato associato alla chiave e' scaduto

54 There are no tokens for automatic signature with
Cosign HSM

Non sono disponibili token per la firma automatica con hsm Cosign

55 Error updating certificate in db Errore durante l'aggiornamento del certificato nel db

56 Wrong method use Errato utilizzo del metodo

57 Method not yet implemented Metodo non ancora implementato

58 Error assigning the OTP Errore durante l'assegnazione dell'OTP

59 Error assigning the static token Errore durante l'assegnazione del token statico

60 Error deleting the account Errore durante la cancellazione dell'account

61 Error activating the account Errore durante l'attivazione dell'account

62 Error loading the account Errore durante il caricamento dell'account

63 Error unlocking the account Errore durante lo sblocco dell'account

64 Unavailable hsm licenses Licenze per hsm esaurite

65 PIN too short PIN troppo corto

66 Session key incorrect Session key errata

67 Session key not specified Session key non specificata

68 Session key undefined Session key non definita

69 Session key expired Session key scaduta

70 Session key not usable Session key non utilizzabile

71 Error generating session key Errore durante la generazione della session key

72 Error incrementing the session counter Errore durante l'incremento del session counter

73 Error sending OTP code Errore durante l'invio del codice OTP

74 Error deleting session key Errore durante la cancellazione della session key

77 Error closing session Errore durante la chiusura della sessione

78 The number of documents to be signed differs from
the number of signature preferences

Il numero di documenti da firmare differisce dal numero di preferenze di firma

79 Error detecting Security World Errore durante il rilevamento del Security World

80 Error detecting the Module Errore durante il rilevamento del Modulo

81 Error reading the SoftCard Errore durante la lettura della SoftCard

82 Error writing the SoftCard Errore durante la scrittura della SoftCard

83 Error deleting the SoftCard Errore durante la cancellazione della SoftCard

84 Error loading SoftCard Errore durante il caricamento della SoftCard

85 SoftCard not loaded SoftCard non caricata

86 SoftCard already exists in the system SoftCard gia' esistente a sistema

87 SoftCard does not exist SoftCard inesistente

88 Error reading the key Errore durante la lettura della chiave

89 Error writing the key Errore durante la scrittura della chiave

90 Error deleting the key Errore durante la cancellazione della chiave

91 Error decrypting the RSA data Errore durante la decifratura RSA

92 Error decrypting the CMS envelope Errore durante la decifratura CMS

93 Error creating the SoftCard Errore durante la creazione della SoftCard

94 The size of the hash does not coincide with the
expected one by the algorithm

La dimensione dell'hash non coincide con quella prevista dall'algoritmo

95 Error loading Cosign Tokens Errore durante il caricamento dei Token Cosign

96 The system takes too much time, HSM overload. Try
again

Il sistema impiega troppo tempo, HSM sovraccarico. Riprovare

97 Timeout passed Timeout superato

98 No signature device associated to the user Nessun dispositivo di firma remota risulta associato all'utente in questione

1001 The OTP device does not exist Dispositivo OTP non esistente a sistema

1007 The OTP device was not activated Il dispositivo OTP non risulta essere stato attivato

1009 Unavailable attempts for the OTP device Superato il numero massimo di tentativi per il dispositivo OTP

1016 The OTP device was not associated to the holder Il dispositivo OTP non risulta essere stato associato al titolare

Method getErrors

This method return a list of errors which can be generated from SWS in in

Name Type Optional Description IN/OUT

lang String String county code in 2 digit, accept only EN, IT IN

errorCode Integer true specify error code which you want obtain the error description IN

List<ErrorDetails> Return a list with error(s) description OUT

In this method is possible to obtain the list of all errors, without set the value of errorCode.

Examples (source code)
Below will find the links contains the source code with example

Java:

To add on CMS repo

Php:

C#: https://cms.firmacerta.it/download/sws_cnet.zip

C# (for SaaS instance): https://cms.firmacerta.it/download/SignEngineWebClientSaaS.zip

ADVANCED USE (visible or not?)

For example signPkcs1

VERIFY TIMESTAMP

While for verify only timestamp, you can use this methods:

timestampTSDVerify It permits to validate TSD files (file and timestamp in the same file)

timestampTSRVerify It permits to validate TSR files (file and timestamp in two different files)

https://cms.firmacerta.it/download/sws_cnet.zip
https://cms.firmacerta.it/download/SignEngineWebClientSaaS.zip

	SWS Integration Guide

